CSES25 Lec14
Graph: DFS algorithms

Debajyoti Bera (M2//)

httne-llcitoc onncloe rAam lali1itd ar in lrcaRI)IB_m N
AALLL AJe AJA LN\ Je Vvél\r.\rvllll CAJ LALLULUNVA L Ll Ll] I, S d J AALld \J

Kosaraju ('78) Sharir ('81) SCC

Source SCC = component with no incoming edge

Sink SCC = component with no outgoing edge

Component graph is acyclic.

Proof:

Let there be cycle, say among some of the components.
Without loss of generality, let the cycle be among
components Cl, C2, C3, .. Ck.

Let u be some vertex in Cl. There is an edge from some

vertex in CI, say ul, to some vertex in C2. Since every vertex
(including ul) in C1 is reachable from u, and u2 is reachable
from ul, therefore, u2 is reachable from u. Since every vertex
in C2 is reachable from u2, therefore, every vertex in C2 is
reachable from u. There is an edge from some vertex in C2
to some vertex in C3.

Applying the same argument as above we get that every
vertex in C3 is reachable from u. Continuing this for all the
components in C4, C5, .., we get that all the vertices in Ck is
reachable from u.

Let uk from Ck have an edge to some w in Cl. So, u has a
path to uk. Furthermore, uk has path to w and w has to path
to u => uk has a path to u. Thus, u and uk have a path to
each other.

So uk must belong to SCC(u) which contradicts the fact
that SCC(u) is different from SCC(uk).

Kosaraju ('78) Sharir ('81) SCC

#Uﬁ’f (\)) i<
Lemma: Let v

Oof

SCC.

pre(u) > pre(v),

FYC;(V\B £ (v)

S«vwz, U, —7 VAN
\S o ppEn BV A
wet isded whem w
DES wondd, gk v

AN e iUt Loidad. > v wowld be Liided pgrrter tran e

Proof: Suppose not,

AU Nounces

e the vertex to finish last
in, DFS. Then, v belongs to a source

so, letu ->wand w

is in the same component as v. There
are two cases (a) pre(u) < pre(v), (b)

e W re (V)
Va0 \nﬁ\(rt(i\ag,%d\/f‘
U_WNaD \/\SS\S&&:
Nete fhgl Hhone a W

VW Gne

) @@v@v&v NITS
v wowld be @N’\M) o wolk 3

~ VNN AR 7 AL Sl

Lemma: If v belongs to a sink SCC, then
Kosaraju (‘78) Shar"" (‘81) SGC SCC(v) = all vertices reachable fro
CRARVIPVS R0}
Proof of 1st part: If u is in SCC(v), then by
definition of SCC, u has a path to and from v.

AE SCC (VY Mo N~ W,
ftee (W) € e ochhalde () |

Proof of 2nd part: (Proof by contradiction) Suppose
Vv has a path to u and u is not in the SCC(v), so in a

different SCC.

Consider that edges on the path from v to u and let
e denote the edge that _first_ goes out of SCC(v),
v Aﬁé{AW\L oot ole(\)> % sccd V) probably to SCC(u) or some other SCC. This edge

= NI TR T % c c(\)> indicates that there is an outgoing edge from

@ b afin ey SCC(v) and contradicts that fact that SCC(v) is a
NV *Np sink SCC. : V\)' A V“,‘_\ ‘gw\‘:I—TI’(
fror voudey Wk ¢ e I SCECD T i,

Kosaraju ('78) Sharir ('81) SCC

Lemma: A sink SCC in G is a source SCC in rev(G).

~Vaguern eﬁé% Qireehons
Proof: Let C be a sink SCC in G. So, it has no edges going out froth any vertex in C to a
vertex in any other component. In rev(G), there would be no edges coming in from a
vertex in any other component to any vertex in C. This is same as the condition for C

to be a source SCC in rev(QG).

Algorithm for finding all SCC

Lemma: Let v be the vertex to finish last in DFS. Then, v belongs to a source SCC.
Lemma: If v belongs to a sink SCC, then SCC(v) = vertices reachable from v.
Lemma: A sink SCC in G is a source SCC in rev(().

Q: How can we find one source SCC? /C)
Q: How can we find one sink SCC? @N @
Q: How can we find all SCCs? O

Hint: Removing a source SCC or sink SCC does not change other SCCs.

Hint: Reverse graph has same SCCs.

Kosaraju ('78) Sharir ('81) SCC

2-DFS O(n+m) algorithm
marhed

S un
Run DFS: L is ordered o1r5d§1W\g I%Sh time
' J

VIVATE

Reverse the edges of the graph: Grev

On Grev DFS(last finished yet-unmarked vertex in L)
Output everything discovered as an SCC
and mark all those that are output
// This is source SCC of the current graph
/| Ignore/implicitly remove this SCC
Goto: DFS(last finished... in L)

Nt defined, f 4N

Topological Sort

%

Order u beforevifu — v

‘> S,@ b Consider “post(v)”!
v e
, /O N [pre,post] intervals are either
@ \é_’ @ 1234567 89101MN121314151617181920212223242526272829303132 neSted Or dj'sjoj‘nt'
PP, e u— van
@*@@;@a@@f\@/@ \
il ost(u) < post(v), then @ <
& ,__._.‘/@A P P ‘C/‘
e pre(u) < pre(v)
: _ e pre(v) <pre(u) < pext(u) qu
\QJ\\/‘Q/\ME{RNM\M%&\L- VP, S RN PO D
(@/‘55%(V><Fm(u) 1=

VDAV, \O«Q/Qm\j%v O\O@Q)u/

Topological Sort Todon() = (T 0den(QY)

Goal: Order u before vifu — v Non CT'@VMV@’C@w))
= Tode(l)

Consider “post(v)” !
Lemma: If u — v and post(u) < post(v), v~ u and u, v belong to some cycle.

Lemma If G is acyclic then for any u — v edge, o5t (w) > \o&f \))
PY\V\}F €U oa wettra Mo\ﬁ? o \56’3\

How to construct a topological ordering (ordering of vertices such that if u — v, then
u is ordered before v) ? How to “print u before v” ?

C e Topo Ordering(rev(G)) = rev(Topo.Ordering(G))
- T S\a% Qo @

D¥S C”\CWN; bf\\,\lr\r’lm ’\v\'\vw\mup\ﬁo Ov&v\Jb\F‘W\f“ﬂ”ﬂ

