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Source SCC = component with no incoming edge

Sink SCC = component with no outgoing edge

Component graph is acyclic.

Proof:
Let there be cycle, say among some of the components. 
Without loss of generality, let the cycle be among 
components C1, C2, C3, ... Ck.

Let u be some vertex in C1. There is an edge from some 
vertex in C1, say u1, to some vertex in C2. Since every vertex 
(including u1) in C1 is reachable from u, and u2 is reachable 
from u1, therefore, u2 is reachable from u. Since every vertex 
in C2 is reachable from u2, therefore, every vertex in C2 is 
reachable from u. There is an edge from some vertex in C2 
to some vertex in C3.
Applying the same argument as above we get that every 
vertex in C3 is reachable from u. Continuing this for all the 
components in C4, C5, ..., we get that all the vertices in Ck is 
reachable from u.

Let uk from Ck have an edge to some w in C1. So, u has a 
path to uk. Furthermore, uk has path to w and w has to path 
to u => uk has a path to u. Thus, u and uk have a path to 
each other.
So uk must belong to SCC(u) which contradicts the fact 
that SCC(u) is different from SCC(uk).
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Lemma: Let v be the vertex to finish last 
in DFS. Then, v belongs to a source 
SCC.

Proof: Suppose not, so, let u -> w and w 
is in the same component as v. There 
are two cases (a) pre(u) < pre(v), (b) 
pre(u) > pre(v).
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Lemma: If v belongs to a sink SCC, then 
SCC(v) = all vertices reachable from v.

Proof of 1st part: If u is in SCC(v), then by 
definition of SCC, u has a path to and from v.

Proof of 2nd part: (Proof by contradiction) Suppose 
v has a path to u and u is not in the SCC(v), so in a 
different SCC.

Consider that edges on the path from v to u and let 
e denote the edge that _first_ goes out of SCC(v), 
probably to SCC(u) or some other SCC. This edge 
indicates that there is an outgoing edge from 
SCC(v) and contradicts that fact that SCC(v) is a 
sink SCC.
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Lemma: A sink SCC in G is a source SCC in rev(G).

Proof: Let C be a sink SCC in G. So, it has no edges going out from any vertex in C to a 
vertex in any other component. In rev(G), there would be no edges coming in from a 
vertex in any other component to any vertex in C. This is same as the condition for C 
to be a source SCC in rev(G).



Algorithm for finding all SCC
Lemma: Let v be the vertex to finish last in DFS. Then, v belongs to a source SCC.

Lemma: If v belongs to a sink SCC, then SCC(v) = vertices reachable from v.

Lemma: A sink SCC in G is a source SCC in rev(G).

Q: How can we find one source SCC?

Q: How can we find one sink SCC?

Q: How can we find all SCCs? 

Hint: Removing a source SCC or sink SCC does not change other SCCs.

Hint: Reverse graph has same SCCs.
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2-DFS O(n+m) algorithm

Run DFS: L is ordered according to finish time

Reverse the edges of the graph: Grev

On Grev DFS(last finished yet-unmarked vertex in L)
Output everything discovered as an SCC
and mark all those that are output
// This is source SCC of the current graph
// Ignore/implicitly remove this SCC
Goto: DFS(last finished… in L)



Topological Sort
Order u before v if u → v

Consider “post(v)” !

[pre,post] intervals are either 
nested or disjoint.

If u → v and
post(u) < post(v), then … ?

● pre(u) < pre(v)
● pre(v) < pre(u)



Topological Sort
Goal: Order u before v if u → v

Consider “post(v)” !

Lemma: If u → v and post(u) < post(v), v ↝ u and u, v belong to some cycle.

Lemma: If G is acyclic then for any u → v edge, …                          ?

How to construct a topological ordering (ordering of vertices such that if u → v, then 
u is ordered before v) ? How to “print u before v” ?

Topo.Ordering(rev(G)) = rev(Topo.Ordering(G))


